Tests of linear hypotheses based on regression rank scores

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tests Based on Regression Rank Scores in Nonlinear Models and Their Computation

We consider a nonlinear regression model introduced in Jurečková [2006], where concept of regression rank scores was generalized to nonlinear models. We try to support by simulations the results (asymptotic properties under some regularity conditions) proven in that article and apply them to a set of real data. We test a two sample problem under nuisance nonlinear regression pointing out some d...

متن کامل

Rank regression with estimated scores

Rank-based estimates are asymptotically efficient when optimal scores are used. This paper describes a method for estimating the optimal score function based on residuals from an initial fit. The resulting adaptive estimate is shown to be asymptotically efficient.

متن کامل

Linear Rank Regression

The errors ei in (1.1) are assumed to be independent and identically distributed, but are not necessarily normal and may be heavy-tailed. Assume for convenience that β is one dimensional. Then (1.1) is a simple linear regression. However, most of the following extends more-or-less easily to higher-dimensional β, in which case (1.1) is a multiple regression. Given β, define Ri(β) as the rank (or...

متن کامل

Efficient Rank Regression with Wavelet Estimated Scores

We provide an estimate of the score function for rank regression using compactly supported wavelets. This estimate is then used to find a rank-based asymptotically efficient estimator for the slope parameter of a linear model. We also provide a consistent estimator of the asymptotic variance of the rank estimator. For related mixed models, the asymptotic relative efficiency is also discussed

متن کامل

Regression rank scores in nonlinear models

with xi ∈ Rk, θ = (θ0, θ1, . . . , θp)′ ∈ Θ (compact in Rp+1), where g(x, θ) = θ0 + g̃(x, θ1, . . . , θp) is continuous, twice differentiable in θ and monotone in components of θ. Following Gutenbrunner and Jurečková (1992) and Jurečková and Procházka (1994), we introduce regression rank scores for model (1), and prove their asymptotic properties under some regularity conditions. As an applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonparametric Statistics

سال: 1993

ISSN: 1048-5252,1029-0311

DOI: 10.1080/10485259308832561